Zu Abschnitt

Was ist Deep Learning?

URL kopieren

KI in beliebigen Umgebungen schneller bereitstellen – mit Red Hat OpenShift AI

Sehen Sie, wie Red Hat® OpenShift® AI den gesamten Lifecycle von KI/ML-Modellen und -Anwendungen beschleunigt – mit integrierten Tools, wiederholbaren Workflows, flexiblen Deployment-Optionen und einem bewährten Partnernetzwerk.

Deep Learning (DL) ist ein KI-Verfahren (Künstliche Intelligenz), das Computern beibringt, Daten mithilfe eines Algorithmus zu verarbeiten, der sich an die Funktionsweise des menschlichen Gehirns anlehnt. 

Deep Learning nutzt künstliche Intelligenz und maschinelles Lernen (KI und ML), um Data Scientists bei der Erfassung, Analyse und Interpretation großer Datenmengen zu unterstützen. Beim Deep Learning, auch bekannt unter den Begriffen „Deep Neural Learning“ oder „Deep Neural Networking“, lernen Computer, Wissen durch Beobachtung zu erwerben. Sie imitieren also die Art und Weise, wie wir Menschen uns Wissen aneignen. 

Im menschlichen Gehirn finden sich viele miteinander vernetzte Neuronen, die als Boten für Informationen fungieren, wenn das Gehirn Informationen (oder Daten) verarbeitet. Neuronen nutzen elektrische Impulse und chemische Signale, um miteinander zu kommunizieren und Informationen zwischen den unterschiedlichen Bereichen des Gehirns zu übertragen. 

Auf diesem biologischen System basieren künstliche neuronale Netze (KNN), die Architektur, die Deep Learning als Grundlage dient. KNN werden aus künstlichen Neuronen gebildet, die aus Softwaremodulen bestehen, die als Knoten oder Nodes bezeichnet werden. Anders als das Gehirn, das chemische Signale nutzt, kommunizieren und übermitteln diese Knoten Informationen mithilfe mathematischer Berechnungen. Dieses simulierte neuronale Netz (SNN) verarbeitet Daten, indem es Datenpunkte in Cluster gruppiert und Vorhersagen trifft.

Wir können uns Deep Learning (DL) als eine Art Flussdiagramm vorstellen, das mit einer Eingabeschicht beginnt und mit einer Ausgabeschicht endet. Zwischen diesen beiden Schichten befinden sich sogenannte „verborgene Schichten“, die Informationen auf unterschiedlichen Ebenen verarbeiten und dabei ihr Verhalten mit dem Empfang neuer Daten kontinuierlich anpassen. DL-Modelle können Hunderte von verborgenen Schichten aufweisen, die beim Entdecken von Zusammenhängen und Mustern innerhalb des Datensatzes eine Rolle spielen. 

In der aus mehreren Knoten bestehenden Eingabeschicht werden Daten in das Modell eingeführt, kategorisiert und anschließend in die nächste Schicht verschoben. Der Weg der Daten durch die verschiedenen Schichten basiert dabei auf den Berechnungen, die für die einzelnen Knoten festgelegt wurden. Während die Daten so sämtliche Schichten durchlaufen, beziehen sie Beobachtungen mit ein, die schließlich die Ausgabe – die finale Analyse – der Daten bilden.

Anwendungen, die Deep Learning einsetzen, sind bereits in unser tägliches Leben integriert und finden in vielen verschiedenen Branchen Verwendung. Die generative KI, die vielen heutigen KI-Tools zugrunde liegt, wird durch Deep Learning ermöglicht.

Use Cases für Deep Learning entwickeln sich ständig weiter. Zu den aktuell am meisten genutzten Technologien gehören maschinelles Sehen, Spracherkennung und NLP (Natural Language Processing). 

  • Maschinelles Sehen: Computer können mithilfe von DL-Methoden Bilder auf die gleiche Weise erfassen und verstehen, wie Menschen es tun. Dazu gehört die automatisierte Moderation von Inhalten, die Gesichtserkennung und die Klassifizierung von Bildern. 
  • Spracherkennung: DL-Modelle können Tonhöhe und Tonfall sowie verschiedene Sprachen und Akzente analysieren. Diese Fähigkeit lässt sich nicht nur für ein besseres Kundenerlebnis nutzen, sondern auch unter dem Gesichtspunkt der Barrierefreiheit für Fälle, in denen eine Transkription in Echtzeit erforderlich ist.
  • NLP (Natural Language Processing): Mit DL-Algorithmen können Computer Textdaten und Dokumente analysieren und Erkenntnisse daraus gewinnen. So lassen sich lange Dokumente zusammenfassen, zentrale Aussagen indexieren, die ein bestimmtes Sentiment erkennen lassen (etwa positive oder negative Kommentare), und Erkenntnisse für automatisierte virtuelle Assistenten und Chatbots generieren. NLP ist der weiter gefasste Bereich, der Entwicklung und Anwendung großer Sprachmodelle (Large Language Models, LLMs) zum Verstehen und Generieren menschlicher Sprache umfasst.
     

Hier sind einige Beispiele, wie die Prinzipien von Deep Learning in verschiedenen Branchen genutzt werden:

  • Kundenservice: Chatbots, virtuelle Assistenten und Serviceportale mit Einwahlmöglichkeit nutzen Tools wie Spracherkennung. 
  • Finanzdienstleistungen: Prädiktive Analysen steuern den algorithmischen (also automatisierten) Wertpapierhandel, bewerten die geschäftlichen Risiken bei der Bewilligung von Darlehensanträgen, decken Betrug auf und unterstützen das Management von Kredit- und Anlageportfolios. Erfahren Sie, wie KI im Finanzbereich und Bankwesen Anwendung findet.
  • Gesundheitswesen: Durch die Digitalisierung von Patientenakten können Bilderkennungsanwendungen Fachkräfte im Bereich bildgebende Diagnostik unterstützen. Solche Anwendungen können lernen, automatisch Warnzeichen zu erkennen, die auf potenzielle medizinische Diagnosen hinweisen. Lesen Sie, wie HCA Healthcare mithilfe von prädiktiven Analysen einen standardisierten digitalen Ansatz für die Diagnose einer Sepsis etabliert. 
  • Medien und Unterhaltung: Ob Onlineshopping oder Streaming-Services – mithilfe von Deep Learning werden die Aktivitäten von Nutzenden nachverfolgt, um personalisierte Empfehlungen zu entwickeln.
  • Industrielle Automatisierung: Beim Einsatz in Fabriken und Lagerhäusern können DL-Anwendungen automatisch erkennen, wenn Menschen oder Objekte keinen ausreichenden Sicherheitsabstand zu Maschinen haben. Auch im Bereich Qualitätskontrolle oder prädiktive Wartung lässt sich Deep Learning nutzen. 
  • Selbstfahrende Autos: Forschende der Automobilbranche trainieren Autos mithilfe von Deep Learning, Objekte wie Stoppschilder, Ampeln, Zebrastreifen und zu Fuß gehende Menschen zu erkennen.
  • Gesetzesvollzug: Spracherkennung, maschinelles Sehen und NLP (Natural Language Processing) können Zeit und Ressourcen sparen, da sie die Analyse großer Datenmengen erleichtern. 
  • Luft- und Raumfahrt sowie Militär: Bei der Überwachung großer geografischer Bereiche lässt sich Deep Learning nutzen, um Objekte zu erkennen, wichtige Bereiche aus der Ferne zu identifizieren und für Truppen sichere oder unsichere Gebiete zu verifizieren. 

Red Hat und IBM entwickelten gemeinsam Red Hat® Ansible® Lightspeed mit IBM watsonx Code Assistant, einem generativen KI-Service, der Entwickler bei einer effizienteren Erstellung von Ansible-Inhalten unterstützt.

Deep Learning ist eine spezielle Form des maschinellen Lernens und unterscheidet sich durch die Art der verarbeiteten Daten und die Lernmethoden, die dabei zur Anwendung kommen.

Bei klassischen ML-Algorithmen ist ein gewisses Maß an menschlicher Intervention erforderlich: Die Datensätze müssen vorverarbeitet werden, bevor sie in das Modell eingeführt werden. Anhand der Eingabedaten werden bestimmte Features definiert und dann entsprechend markiert, in Tabellen organisiert und anschließend in das ML-Modell eingeführt. Bei DL-Algorithmen hingegen ist ein solches Maß an Vorverarbeitung nicht erforderlich. Sie können auch unstrukturierte Daten wie Textdokumente, Bilder mit Pixeldaten oder Dateien mit Audiodaten verstehen. 

In Fällen mit sehr großen Datenmengen, fehlendem Hintergrundwissen zum Thema oder komplexen, zeitaufwendigen Aufgaben kann Deep Learning gegenüber klassischem maschinellem Lernen gegebenenfalls die bevorzugte Lösung sein.

Wir wissen jetzt, dass Deep Learning auf einer Struktur von Knoten basiert, die in einem künstlichen neuronalen Netz miteinander kommunizieren. Um ein solches KNN zu erstellen, müssen zusätzlich zu den Daten auch Berechnungen und Parameter in das Modell eingespeist werden. Außerdem müssen die notwendigen Vorkehrungen getroffen werden, um sicherzustellen, dass die Berechnungen Verzerrung und Varianz berücksichtigen. 

Beim maschinellen Lernen bezieht sich Verzerrung darauf, inwieweit Ihr Modell Annahmen oder Generalisierungen auf die Daten anwendet, um die Zielfunktion einfacher lernen zu können. Eine hohe Verzerrung bedeutet, dass das Modell bei der Verarbeitung von Informationen (fehlerhafte) Vereinfachungen und Abkürzungen vornimmt. 

Varianz bezieht sich darauf, wie weit die einzelnen Datenpunkte vom Mittel entfernt sind, oder darauf, wie weit bei der statistischen Messung der Abstand zwischen den Zahlen in einem Datensatz ist. Im Gegensatz zur Verzerrung bezieht sich Varianz darauf, wie sensibel ein Modell hinsichtlich der Trainingsdaten ist. Eine hohe Varianz (oder Sensibilität) bedeutet, dass das Modell zu sehr auf Details achtet und die zugrunde liegenden Muster im Datensatz nicht erkennt. 

Wenn beim überwachten Lernen die Varianz zu hoch und die Verzerrung zu niedrig ist, spricht man von Überanpassung. Wenn die Verzerrung hoch und die Varianz niedrig ist, spricht man von Unteranpassung. Eine optimale Lösung zu erstellen ist nicht einfach, und das Phänomen ist allgemein als Verzerrung-Varianz-Dilemma bekannt. 

Parameter definieren Grenzen, und Grenzen sind entscheidend, um die enormen Datenmengen zu verstehen, die DL-Algorithmen verarbeiten müssen. Überanpassung und Unteranpassung lassen sich dabei oft korrigieren, indem jeweils weniger oder mehr Parameter verwendet werden. 

Berücksichtigung menschlicher Verzerrung

Wenn ein DL-Modell anhand von Daten trainiert wird, die statistisch verzerrt sind oder keine akkurate Darstellung der Bevölkerung bieten, kann es zu einer fehlerhaften oder verfälschten Ausgabe kommen. Bestehende menschliche Verzerrung wird leider oft auf künstliche Intelligenz übertragen und birgt somit das Risiko, diskriminierende Algorithmen und verzerrte Ausgaben zu schaffen. 

Der Einsatz von KI in Unternehmen zur Verbesserung von Produktivität und Performance nimmt stetig zu. Daher ist es entscheidend, dass dafür Strategien eingesetzt werden, um Verzerrungen zu minimieren. Dies beginnt bereits mit inklusiven Design-Prozessen und einer sorgfältigeren Berücksichtigung von repräsentativer Diversität innerhalb der erfassten Daten. 

Was ist eine Black Box?

Der Ausdruck „Black Box“ bezieht sich auf den Fall, dass ein KI-Programm eine Aufgabe in seinem neuronalen Netz durchführt und seine Arbeit nicht zeigt. Dadurch kommt es zu einer Situation, in der nicht einmal die Data Scientists und Engineers, die den Algorithmus entwickelt haben, genau erklären können, wie das Modell zu einer bestimmten Ausgabe gelangt ist. Durch den Mangel an Interpretierbarkeit bei Black Box-Modellen kann es zu negativen Auswirkungen kommen, wenn diese für Entscheidungen von großer Tragweite genutzt werden, besonders in Branchen wie Gesundheitswesen, Finanzwesen oder Strafrecht. 

DL-Modelle können komplexere Rechenaufgaben ohne menschliches Eingreifen durchführen, erfordern dabei aber eine höhere Rechenleistung, eine ausreichende Infrastruktur und größere Trainingsdatensätze. Mit Cloud Computing können Teams gleichzeitig auf mehrere Prozessoren zugreifen, etwa Cluster von GPUs (Graphic Processing Units) und CPUs (Central Processing Units) – eine ideale Umgebung zum Durchführen komplexer mathematischer Operationen.

Werden DL-Modelle in der Cloud entworfen, entwickelt und trainiert, können Entwicklungsteams Workloads schnell und genau skalieren und verteilen. Gleichzeitig sinken dabei die operativen Kosten. 

 

Deep Learning und maschinelles Lernen am Edge

Das Arbeiten in der Cloud eröffnet Möglichkeiten für den Einsatz von maschinellem Lernen am Edge. Durch das Etablieren von Edge Computing Hubs, die mit Public Cloud-Ressourcen verknüpft sind, lassen sich Informationen in Echtzeit erfassen und analysieren. Dadurch können sie verschiedene Abläufe unterstützen: von Statusaktualisierungen in Lieferketten bis hin zu Informationen über Evakuierungsorte bei Katastrophen. 

 

Red Hat bietet die gemeinsame Basis für Ihre Teams, um KI-Anwendungen und Modelle für maschinelles Lernen (ML) mit Transparenz und Kontrolle zu entwickeln und bereitzustellen. 

Red Hat® OpenShift® AI ist eine Plattform, die KI-Modelle für Ihren speziellen Use Case und mit Ihren eigenen Daten trainieren, mit Prompts versehen, feinabstimmen und bereitstellen kann.

Für umfangreiche KI-Implementierungen bietet Red Hat OpenShift eine skalierbare Anwendungsplattform, die für KI-Workloads geeignet ist und Zugang zu gängigen Hardwarebeschleunigern bietet.

Red Hat nutzt auch eigene Red Hat OpenShift AI-Tools, um den Nutzen anderer Open Source Software zu verbessern, angefangen mit Red Hat Ansible Lightspeed mit IBM watsonx Code Assistant. Dieser Service hilft den Automatisierungs-Teams, Ansible-Inhalte effizienter zu erlernen, zu erstellen und zu pflegen. Die Lösung erkennt Nutzereingaben und interagiert mit den Basismodellen von IBM watsonx, um Codeempfehlungen zu generieren, die dann zur Erstellung von Ansible Playbooks verwendet werden.

Darüber hinaus bieten die Partnerintegrationen von Red Hat den Zugang zu einem Ökosystem zuverlässiger KI-Tools, die für die Zusammenarbeit mit Open Source-Plattformen entwickelt wurden.

Weiterlesen

Artikel

Was ist generative KI?

Generative KI stützt sich auf Deep Learning-Modelle, welche auf großen Datensätzen trainiert wurden, um neue Inhalte zu erstellen.

Artikel

Was ist Machine Learning?

Beim Machine Learning (ML) oder maschinellem Lernen wird ein Computer darauf trainiert, Muster zu finden, Vorhersagen zu treffen und aus Erfahrungen zu lernen, ohne explizit programmiert zu werden.

Artikel

Was sind Basismodelle?

Ein Basismodell ist ein Modell des maschinellen Lernens (ML), das für das Ausführen verschiedener Aufgaben trainiert ist. 

Mehr zu KI/ML

Produkte

Neu

Eine Plattform für Basismodelle, mit der Sie Unternehmensanwendungen mithilfe von großen Sprachmodellen (LLM) der Granite-Familie nahtlos entwickeln, testen und bereitstellen können.

Ein auf KI fokussiertes Portfolio, das Tools zum Trainieren, Tuning, Bereitstellen, Überwachen und Managen von KI/ML-Experimenten und -Modellen auf Red Hat OpenShift bietet.

Eine Plattform, die es Ihnen ermöglicht, Unternehmensanwendungen schnell und effizient über die von Ihnen gewünschte Infrastruktur bereitzustellen. 

Red Hat Ansible Lightspeed mit IBM watsonx Code Assistant ist ein generativer KI-Service, der von und für Teams aus dem Bereich Automatisierung, Operations und Entwicklung für Ansible konzipiert wurde. 

Ressourcen

E-Book

Wichtige Überlegungen beim Aufbau einer produktionsbereiten KI/ML-Umgebung

Analystenreport

Total Economic Impact™ der Red Hat Hybrid Cloud-Plattform für MLOps

Webcast

Mit Open Source und Kubernetes den größtmöglichen Nutzen aus KI ziehen